A derivation of Dirac equation from standing waves
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I consider about a situation that three of A standing wave solution of non-linear wave

equation are exist and in the center of the solutions these standing waves are formed

approximately as follows.
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Where @,is angular frequency
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I seek the real part of the standing waves.
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I found that they are combinations of a couple of standing waves and one of backward

wave or traveling wave.

And if we make a product ¢, @, with spin it is also a combination of a couple of standing

waves and one of backward wave or traveling wave as follows.
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I assume that these standing waves are traveling with speed V.
Where C is the light speed.

When we observe the time and distance from a static system that travel with speed
V then
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In the static system the time and distances are replaced as
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I assumea,,a, as follows
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Q :[all 181, ,853,8,,85 ’alﬁ]:|:0!l’7l ,—7,0,1
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a, :[a'Zl 1@ 95 1853 ,8y, ,855 ’aze]:{_i 10,7| ,711,0

Then the inner products of a,,a, are

a ea =3
a, ea,=0
a,ea, =3
a,ea =0
a ea =35,

Where 0,,is the Kronecker delta.
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I assume that
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Where | is the resolution of distance.

then
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I assume that
E is the energy  Mis the weight p is the momentum
f, is the frequency when it is stationary.

f isthe frequency when it is traveling.

From the theory of special relativity.

E =mc?y
p=mvy
f="fy

h is the constant of plank

From the Quantum mechanics.

E =hf =hf,y
Therefore the frequency is proportional to the weight as
mc?
fo =
h

This is consistent with A standing wave solution of non-linear wave equation[A

condition when the frequency is in proportion to the weight |

If @,is the angular frequency then
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From the Theory of special relativity the square of E is
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I consider about standing wave ¢ as following
. w,a,b
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Where o,,w, are complexes

If® is a result of calculation as following
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Wher % is for the formula after this

b' is the Transposed matrix of b

And a"is the Conjugate transpose matrix ofa.

With adding former formula then
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And we seek the gradient of ©
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If o is spin matrix of Pauli
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This equation is consistent with the Dirac equation.
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Mathematical formulas

cos(A)—sin(A) = —/2 sin(A—%)

sin(A)+ cos(A) = \/ESin(A-l- %)

sin(A+B)=sin(A)cos(B)+cos(A)sin(B)

exp(i0) = cos(0) +i(sin())



